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The distribution of electric potential and field in flat and circular channels of constant 
cross section with infinite electrodes at end-faces and a flow of a perfect incompressible 

fluid containing a space charge is determined. Effect of the channel geometric dimen- 
sions on the electric field distribution is investigated on the assumption of zero mobility 

of charged particles, and the limits of applicability of the one-dimensional theory are 
established. The derived solutions correspond to the zero approximation in the series 

expansion in terms of the interaction parameter in the solution of (the problem of) per- 

fect gas flow in a channel of constant cross section. The influence of electrohydrodyna- 

mic effects on the hydrodynamic flow is evaluated in the first approximation. 

Let us consider the stationary flow of a perfect incompressible fluid in a plane constant- 
section channel having infinitely extended electrodes at its end-faces (Fig. 1) . let us 
further assume that the velocity vector has only one component u m= us -= const 

4+ 
directed along the s,-axis. In this case the continu- 

I 
I I 

ity equation is identically satisfied, and the equation 

I I of motion will be used for the determination of pres- 
hd I sure. We shall consider the flow of a fluid in which 

k- 
I 
I the mobility of charged particles is zero (0 = 0). 
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With these assumptions the electric current defined 

1 by Ohm’s law j :-= qu, flows along the sr-axis only. 
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In the projection of the xl -axis we have 

I 
-h ; I 

j, ~-~ quo‘ (1) 

I 
Here (/ is the space charge of the fluid. If all 

parameters are assumed to be independent of the 

Fig. 1 
z,-coordinate, then from the equation of continuity 
of the electric current we obtain q -7 q (yi). The 

form of function q (yl) is determined by the boundary conditions at the channel inlet. 

In the following we assume that y ~1, COII s’t. Using Eq. (l), we can relate q,, the 

total current 1 by means of the relationship q. == 1 / Zhu,, where 2h is the channel 
height. The channel length is denoted in the following by L. 

For the determination of the electric field and potential in and outside the channel 
we use the equations of electrohydrodynamics [1] 

div Ei = I /‘2hu&,, div E, = 0, E,,,; = - VT,,i (2) 

Here &0 is the dielectric constant of vacuum, and subscripts e and i denote, respec- 
tively, parameters outside and in the channel, We also assume that the electric field E 
has components along the ~ci- and $/,-axes only. Eliminating the electric field from 
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system (2), we obtain 
Aqi z - 1 / ~h~~~~~~ Aqp, = 0 (31 

Boundary conditions for system (3) ate formulated as follows: 

CFC (0% Y1) = 9% @P YI) = 0, %(peLYr)==rpi@*Yr~=Vl C-M<?&<@C) 

Ilere 9p1 is the difference of electrode ~tentia~. 
The torm of the boundary conditions (4) presupposes the continuity of the normal 

component of the electric field alang the non~nduct~ng walls $J, = =t= h. This implies 

the absence of surface charges on these wails. 

We pass in Eqs. (3) and in the boundary conditions (4) to d~me~ionless variables 
defined by formulas 

$+* y+, I&=.!&* C&+, e=D!!L.- ‘Pt, =_z* E ' Q = ~~~~~~~* 

With these new variables we have 

Aai 5 - Q* A@, = 0 (5) 

(Pe (0, y) = a$ (09 Y) = 0, a?,(f,y)=~i(Lfd=~ c--w <Y<=J) 

mcD,=X for y--+&30 

faking use of the symmetry of problem (5) about the channel axis, we seek the solu- 
tion of this problem in the form of a Fourier series for y > 0 only 

co 

Q = 5 + 0,SQ (5 - x2) + 2 A, ch h,,y sin b,s 
n=l 

(6) 

Satis~ing the boundary conditions, we obtain 

A no- ~w+-W, &= $shh,& h, = (2n- 1)~ 0) 
n n 

Formulas (6) and (7) provide the complete solution of the problem (5). pressure dis- 

tribution in the channel can be found by using the Bernoulli equation 

The obtained solution makes possible the derivation of the expression for the mean 

value of the longitudinal electric field (e,> over the channel cross section, for that of 
the transverse fidd eqL(’ at the channel wall y = k , and for the mean value of the 
electric potential (Qi) over the Cross section 

O" 1- exp (-- a&$ 
(e,) = - 1 +0.5Q(2z- 1) -t_q 2 h,S cos h,x (9) 

7l=l 
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(cont. ) 

The solution of the analogous problem of a circular cross section channel can be writ- 

h, :-- (Zn - l)n, r -= rl / I?,, E = R, / I, 

Here I,, K,, I,, K, are Bessel functions of a purely imagina~ argument,, fr is a 
polar coordinate, and R, the channel radius. The parameter Q appearing in these solu- 

tions is in this case determined by the total current 1 flowing in the channel. 

In addition we write the formulas which are analogous to those of (9) 

71=1 --r, 

These solutions provide the means for investigating the effect of the channel geomet- 

ric dimensions (parameter f, on the limits of applicabili~ of the one-dimensional the- 
ory for the calculation of electrohydrodynami~ flows in channels. bet us consider the 

case in which (e,) = 0 for 5 = 1 (we note that a similar investigation of flows in 
a circular channel yields only quantitatively different results). 

From the condition <e,> -- (1 when 2 1 we obtain 

(IO) 

For $ --f 00 we have the parameter () -- 2, and {r,,, --‘- :! (X - 1) and ,<(l)i; -- 

= 2s - ,x’ i.e. in the case of short wide channels the solution behaves as the known 
one-dimensional solution @, 31, and along the nonconducting channel walls e,,,, (x) is 

finite. For J: --: 0.5 and E -+ 00 we have e,,, = 4C: / ;n2 em 0.37 .where G is the 
Catalan constant (G = O.M5...). However the effect of the transverse electric field 
on the flow is small and the flow is close to one-dimensional. 

it can be seen in Figs.2 and 3 that when 5 > 0.5 the solutions for <@ii and (e,) 
differ only slightly from that derived by one-dimensional theory (dashed line). 

In long narrow channels (E - (1, Q -+ rx-) in mode <e,) = 0 at 5 -= 1 parameter 

euzO --* U and the mean field (~~1 is close to -1 throughout the channel length, except 
in the narrow layers near the electrodes, Figs.2 and 3. 

The curves of dis~ibutioR of eycu along the length of the channel, appearing in Fig. 4, 
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show that in the case of zero mobility the assumption of constancy of the electric field 
transverse component at the nonconducting channel walls, sometimes made in calcula- 
tions by the refined one-dimensional theory [4-71, is valid for narrow channels (small 

X 

Fig. 2 

X 

Fig. 5 

Fig. 6 

Fig. 3 

0 11.5 

Fig. 4 

parameters E). Although for small E the fields eyw 
are not large, their considerable effect on the flow is 

seen from Figs.2 and 3,thus corroborating the necessity 

for taking these fields into consideration in calcula- 

tions by the hydraulic theory. 
The condition (e,) = 0 for az = 1, which in the 

one-dimensional theory corresponds to the maximum 
power mode, imposes on parameter Q the limitation 

(12) 
Here Q (E) is defined by formula (10) and R is the 

resistance of the external circuit per unit of channel 

length along the q-axis. For large E condition (11) 

becomes Q = 2 - the condition known in one-dimen- 
sional theory p, 31. 

If the derived solution is used for calculating modes 
(of operation) corresponding to those prevailing in 
actual installations without specifying the condition 

(e,: = 0 at 5 = 1, it is necessary to introduce in 
addition the dependence qI -= ‘pr (I), which is the 

volt-ampere characteristic of such installations. This 

dependence has to be determined either experiment- 
ally, or theoretically with the work of the corona dis- 

charge - source of charged particles - at the channel 
inlet taken into account. 
To clarify the influence of two-dimensional effects 
(effects of parameter E) on the lengthwise distribu- 
tion of the mean electric potential over the channel 
cross section, an analysis was made of the solution for 
E = 0.1 and Q = !20. 
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The results of calculations obtained by the one~di~e~sional theory (curve 0 and the 
solution of the two-dimensional problem (curve 2) for the same values of parameters fj 
and g are shown in Fig. 5. These curves indicate that in a channel in which the ratio of 

width to length Ph i L is equal to 0.2 the flow differs substantially from one-dimensional, 
When the transverse eIectric field is taken into consideration in the one-dimensional 

theory, it is usually assumed that this field is constant along the channel. The one-di- 
mensional theory does not, however, provide means for the determination of the order of 
magnitude of er,,,,+ The derived two-dimensional solution makes it possible to determine 
the order of magnitude of e,,,+, which must be used in the one-dimensional approxima- 

tion for the correct evaluation of two-dimensional effects. 
Averaging the equations tl iv o (1 and VCD - e over the channel cross sec- 

tion, we obtain 

Here eyul (X) is the transverse field at the channel wall. Parameters (c,> and eyrll 
derived by the two-dimensional theory identically satisfy Eq. (12). Let us consider be- 

sides Eq. (12) the equation dP * 
sz _+,” 

2 
__ Q_ ‘“;I’ ..- Q”, 03) 

In Eq. (13) instead of the true value of field ~~~~ (x> , we have the value of the rrans- 
verse field at the wall e;, averaged over the channel length 

1 ,. 

The parameter 0% in the right-hand side of the first of Eqs. (13) can be calculated by 
using solution (9). We have 

“7 1 --. csp (- a&) 
Q*-=C+$& k s-l-:a(E)V 

71=1 R’ 
(1‘4) 

The solutitin of system (13) with boundary conditions @it 1: 0 at ;t’ ~~ 0 and 
@I,* .I j at x :- ‘! is of the form 

It,” 3 Z _i_ o,5yic (5 - ~“) (15) 

This solution is the same as that derived in the one-dimensional theory by the substi- 

tution of parameter e*defined by formula (14) for Qs Function a (5) appearing in this 

formula contains the correction for two-dimensional effects, and its value varies from 

zero (when g -+ 0) to unity [when 5 -+ oo). The dependence CI (5) is shown in Fig, 6. 
Curve 3 in Fig, 5 which corresponds to solution (15) sl~ows a better correlation with 

the exact solution than that derived by the purely one-dimensional theory (curve 1). 
Thus the two-dimensional solution indicates that in the case of zero mobility a purely 

one-dimensional approximation can be used for calculating flows in short wide channels 
(6 > 0.5) . In narrow channels two-dimensional effects are substantial. The above exam- 
ple shows that in the latter case the lengthwise distribution of the electric potential is 

to be calculated by the one-d~n~e~ional theory with the constant transverse field taken 
into account. This reduces to substituting in the one-dimensional solution of 0’ = 

= cr, (5)Q for Q . The quantity a(E) defining the deviation from the one-dimensional 
concept is universally applied for channels of various lengths, Its curve is shown in Fig.& 

We point out that the derived solution is exact in the case of a perfect incompressible 
liquid. If the flowing medium is a perfect gas, this solution may be considered as the 
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zero term in the series expansion in terms of the small interaction parameter s. Subse- 
quent expansion terms can be calculated in a manner similar to that used in [S]. 

The equations of electrohydrodynamics in the case of zero mobility of charged parti- 
cles are @] 

3PU aPv a9u %JV PT -- x+7=0, as + +, =O, dive=Qg, P=W 

t 
au au 

P ux+vay i 
A!?_ + Sge 

kh au aP 
=-a= .*P uxi i 

‘-UT =-ay+S~e!, (16) 
i 

P (14 $ + v +$-) = Sq (uey + z-e;), t = ’ 
ua + 3 

(r - 1) >llo:! + --F- 
Here 

U 2’ 

U==--, 1’=-, P 
P = pou”” 1 p=+, T= $, q EL 

Ufl WI q=F, t?==K 

Xl 111 gJ=- QOW qoLa 2 

L ’ J, = - L * S= pouoa 7 Q=(PIEO , Jfo'= & (17) 

The subscript zero in relationships (17) denoted hydrodynamic parameters for I -+ --30. 

Let us assume that the flow is in a plane channel extending from minus to plus infinity, 

and that charges of constant density 40 over the (channel) cross section are introduced 
at z = 6 and subsequently completely removed by the electrode at x = 1. This implies 
the absence of an electric charge in the regions x < 0 and X > 1 and, consequently, equa- 

tions of conventional hydrodynamics are valid in these regions of e s 0. 

In tile case of small interaction parameter 5 the solution of system (16) may be sought 
in the form rr=1+Sul, VCSCI, p= r:1/,,2+S~1, T=lt-STl 

(15) 
P=l+sPl, q = i + Sf/l, e = ei + Se1 

As the zero approximation for the hydrodynamic parameters in (18) we take the solu- 

tion corresponding to the flow in a plane channel in which the parameters and the charge 
density in region 0 < x < 1 are constant. As the first approximation in that region we 

have 
$.+_~+%_o, a 

[ 
T 

ax (7 - 1) 111g + all = ex, 
PI+ T1 

p1= 
TM"3 

ihl (1% 

ax =- 
t&+eX. $=--$$+eg 

The electric field vector ei appearing in formulas (18) and (19) is determined by 
formulas (6) and (7), and the flow in regions x < 0 and 5 > 1 is defined by equations 

of conventional hydrodynamics. These equations can be derived from Eqs. (19) by spe- 
cifying ei z 0. 

Eliminating from Eqs. (19) pl, T,, pl, we obtain for region 0 < x < 1 

In regions x < 0 and 2 > 1 we have 

(1 - M”2) $p + + = 0, 
au1 i3Vl 

i 

@I(V) for x<O 
F-Z = 03 (!I) for 2 > 1 (‘1) 

Here CII~, 02, co3 are arbitrary functions of y. 

We shall solve the system of Eqs. (20), (21) for the following boundary conditions: 

u1 = c1 = 0 for 5 -+ - 00, VI = 0 for y = + E -_ (22) 
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Conditions (22) must be supplemented by relationships at planes Z- : o and .r t 

where normal derivatives of the unknown functions can become discontinuous. In these 

planes we have [S] 
{~iL:I~)_i~j::(~,,I_O (“:i) 

Braces denote here differences between the values of corresponding parameters ahead 

and behind a discontinui~. 

LJsing (19)-(23), we obtain wr 1: oz m: Ok -7. (1 and, also, 

(2!l} -_ { 21 = 0 for s=O, s=f (L4 ) 

Hence the flow in the channel is potential. Introducing the potential Q defined by the 

relationship ~r = VQ,we obtain 

The boundary conditions for system (25) are of the form 

z&o for 5”--?, Z$- 1~: 0 for ?I _- $4 

0 for s=Oandx-1 

(t-q 

Equations (25) with boundary conditions (26) are solved differently in the case of 
MO>1 andinthatofM,,<l. 

When M, > 1 , the flow parameters in the region z < 0 are constant, hence 11% = 

= z+ = 0. Solutions in the regions 0 < 5 < 1 and 2: > 1 are derived consecutively : first, 

for the region 0 < z < 1 with boundary conditions 

w 
9-x =O for s=O, G= 0 for ?I= 1-4 

and, then, in region x > 1 with boundary conditions 

These solutions can be obtained by the Fourier method. They are: 
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Here @, (sf are the coefficients in the expansion of functions CIti (z, ,v) into Fourier 

series ir. terms of cospny along segment - 5 < y < E 

The solution of the problem for M, < 1 is to be sought simultaneously for all three 

regions, using boundary conditions (26). The Fourier expansion yields: 
for 5 < 0 

tz),, tz) esp [- v,, fz - z)I dt cos pn!f (2) 

@, (t) esp I--- v,, (r - x)1 &sin pn~ 
n=1 11 

p1 = - Ul, Tl = (r - 1) Mo2p1 (VI, = Pa! v-1 - Mu21 

for 0 < 5 < 1 

C‘i ccc2 % (~1 cb s (5 - t) dt2 sin tw -1 . 
n = 1 0 

1 

111. I_- - (241 -j- (I).) L , Tl = (Y - 1) ilft,~, rr, (5) - : s (0, (T) exp [Y, (5 - T)] dr 

and for x > 1 0 

1 

p1 = - (1 + Ul), TI = (y - 1) Xa2p~, b, (Cc) = s (1),$ (r) exp [- v, (3 - z)l dz 

n 

For the determination of q1 and e1 we have the svstem of equations 

Using bo~da~ conditions q1 = o at z = 0, we obtain for region 6 < z < 1 

91 = - MdL [Qi -F UI (5 Y) - ui (0, y)f (33) 

Functions r~i and v1 appearing in (32) and (33) are determined by formulas (27) and 
(30), respectively, for the cases of M, > 1 and M, < 1 . Vector et of the electric field 
can be found from Eq. (32) in which q1 is given by formula (33). 

let us analyze solutions (27) - (31). Formula (28) shob., that when M, > 1 , the per- 
turbations from region 0 < z < 1 containing charges propagate with undamped ampli- 
tude only in the downstream direction. In the case of M, < 1 the hydrodynamic para- 

meters become constant, when x 4 =- , and we then have 
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The total enthalpy change Ai along the whole length of the channel is equal to 5 

for both fif, < 1 and Al, > 1. 

We use solutions (27) - (31) for determining the mean hydrodynanlic parameters over 

the (channel) cross section. For z < 0 we have <u,> = <PI) = <T,> = 0 , and for 0 < 

<x<l 
(Ul) = * T$$ {‘l$), 

(~,i) 
(PI)=- 1 _-Mo2 , TX= - 

(Y - 1) -1102 (a$> 
1--fkfMoz (34) 

Finally, for z > 1 we obtain 

MO2 1 
W)= i _M2 * (Pl)=- i_&fo3 , 

(y - 1) MO? 

0 (Tl) = - 1 _M”2 - (35) 

Function (Qi) appearing in formula (34) is defined by formula (9). Curves of this 
function are shown in Fig. 2 for various values of 4. The proposed here theory for the 
approximate evaluation of two-dimensional effects in hydraulic approximation permits 

the substitution of the function (mi> by a* defined in (15). 

In concluding the authors express their thanks to G. A. Liubimov for discussing this 

paper. 
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